EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
Um grande passo na evolução dos conhecimentos sobre os supercondutores é o estabelecimento da existência de um gap de energia Δ, da ordem de kTc, entre o estado fundamental e as excitações das quasi-partículas do sistema. Esse conceito já havia sido sugerido por Daunt e Mendelssohn na tentativa de explicar a ausência de efeitos termoelétricos. Mas as primeiras evidências quantitativas e experimentais vieram com as medidas precisas do calor específico dos supercondutores feitas por Corak. Estas médias mostraram que o calor específico eletrônico é definido por uma dependência exponencial com:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde o estado normal do calor específico eletrônico é dado por Cen≈γTc, e a e b são constantes numéricas.
A Teoria BCS foi proposta por John Bardeen, Leon Cooper, e John Robert Schrieffer e explica o fenômeno da supercondutividade.
A Teoria afirma principalmente que os elétrons em um material quando no estado supercondutor se agrupam em pares chamados pares de Cooper. Os pares de Cooper são elétrons condensados em estados de menor energia. Esta formação de pares de Cooper depende da microestrutura do material e da forma da rede cristalina, já que este par de elétrons se move de forma acoplada com a rede.
Independentemente e ao mesmo tempo, este fenômeno de supercondutividade foi explicado por Nikolay Bogoliubov por meio das então chamadas transformações de Bogoliubov.
Em muitos supercondutores, a interação atrativa entre elétrons (necessariamente aos pares) é conduzida aproximada e indiretamente pela interação entre os elétrons e a estrutura do cristal em vibração (os fônons).
Um elétron que se move através de um condutor atrairá cargas positivas próximas na estrutura. Esta deformação da estrutura faz com que outro elétron, com “spin” oposto, mova-se na região de uma densidade de carga positiva mais elevada. Os dois elétrons são mantidos unidos então com alguma energia de ligação. Se esta energia de ligação é mais elevada do que a energia fornecida por impulsos dos átomos de oscilação no condutor, então os pares de elétrons conseguem se manter juntos e resistem aos impulsos, não experimentando resistência.
A teoria BCS foi desenvolvida em 1957 e recebeu o Prêmio Nobel de Física em 1972.
Partindo da suposição que existe alguma atração entre elétrons, a qual pode suplantar a repulsão de Coulomb. Na maioria dos materiais (em supercondutores a baixa temperatura), esta atração é conduzida aproximadamente de maneira indireta pelo acoplamento dos elétrons à estrutura cristalina. As extensões da teoria de BCS existem para descrever outros casos, embora sejam insuficientes para descrever completamente as características observadas da supercondutividade de alta temperatura, mas é hábil para dar uma aproximação para o estado mecânico quântico do sistema de elétrons (atrativamente interagindo) dentro do metal. Este estado é sabido agora como de "o estado BCS". No estado normal de um metal, os elétrons movem-se independente, visto que no estado BCS, são ligados em pares de Cooper pelas interações atrativas.
Desde que os elétrons sejam limitados em pares de Cooper, uma quantidade finita de energia é necessária para separar estes dois elétrons independentes. Isto significa que há um gap de energia para a "excitação de partícula única", ao contrário dos metais normais (onde o estado de um elétron pode ser mudado adicionando arbitrariamente uma pequena quantidade de energia). Esta abertura de energia é mais alta a baixa temperatura, mas desaparece na temperatura de transição quando supercondutividade cessa de existir.
A teoria BCS corretamente prediz que a variação do gap com a temperatura. Igualmente dá uma expressão que mostra como este gap cresce com a força da interação atrativa e a (fase normal) da partícula única na densidade dos estados na energia de Fermi. Além disso, descreve como a densidade dos estados é mudada ao incorporar o estado supercondutor, onde não há qualquer estado eletrônico na energia de Fermi. O gap de energia é observada o mais diretamente em experiências de tunelamento e na reflexão das micro-ondas de supercondutor.
A teoria de Ginzburg-Landau
Embora boa parte deste trabalho siga a formato da teoria BCS, substancialmente predizendo vários processos como a relaxação nuclear e a atenuação ultrassônica em que o gap de energia e o espectro de excitação têm um papel essencial. A teoria de Ginzburg-Landau se concentra inteiramente no comportamento supercondutor dos elétrons ao invés das excitações, e foi proposta em 1950, 7 anos antes da teoria BCS. Ginzburg e Landau introduziram uma pseudo-função de onda ψ complexa como um parâmetro dentro da teoria geral de Landau das transições de fase de segunda ordem. Esse ψ descreve os elétrons supercondutores, e a densidade local de elétrons supercondutores (definida pelas equações de London)
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Então, usando um princípio variacional e trabalhando para assumir uma expansão em séries da energia livre em função de ψ e de ψ com a expansão dos coeficientes α e β, eles derivaram a seguinte equação diferencial para ψ:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
a equação acima é análoga a equação de Schrödinger para uma partícula livre, mas com um termo não linear. E a equação correspondente para a super-corrente elétrica fica:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
que é na verdade uma expressão da corrente a partir mecânica quântica para partículas de carga e* e massa m*. Com esse formalismo os cientistas foram capazes de tratar dois problemas, com ajuda da [teoria de London]:
- Efeitos não lineares dos campos fortes o suficiente para mudar ns ou |ψ|²
- A variação espacial de ns.
A grande contribuição desta teoria foi tratar do estado intermediário de alguns supercondutores, onde o estado normal e o supercondutor coexistem na presença de um campo magnético H~Hc.
Quando foi proposta, a teoria pareceu mais fenomenológica, e não foi dada a devida importância, especialmente na literatura ocidental. Mas de qualquer forma em 1959, Gor'kov foi capaz de mostrar que a teoria de Ginzburg-Landau era, de fato, uma forma da teoria BCS microscópica.
Supercondutores do Tipo II
Em 1957, o cientista russo Alexei Abrikosov publicou um artigo significativo onde investigava o que aconteceria caso a razão κ= λ/ξ da teoria de Ginzburg-Landau fosse grande ao invés de pequeno, se ξ<λ e não o contrário, o que levaria a uma energia de superfície negativa. Abrikosov concluiu que existiam dois tipos distintos de comportamento e chamou de supercondutores do tipo II os que apresentavam tal característica. Ele mostrou que o ponto exato de separação entre os dois regimes era quando κ=1/2. E para materiais com κ>1/2 ele descobriu que ao invés do desaparecimento descontinuo da supercondutividade na transição de primeira ordem em Hc, havia uma penetração contínua no fluxo começando com um campo crítico pequeno Hc1 alcançando B=H num campo crítico Hc2. Essa propriedade foi responsável por permitir magnetos supercondutores de altos campos.
Outro resultado importante na análise de Abrikosov foi que em um estado misto, também chamado de fase de Schubnikov, entre os valores críticos de Hc1 e Hc2 o fluxo pode não penetrar nos domínios laminares, mas num arranjo de fluxo tubular, cada um carrega um fluxo quântico.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Em cada célula unitária do arranjo com formato triangular (menor energia livre) existe um vórtex de super-corrente concentrando o fluxo até o centro do vórtex. Concluindo então que os supercondutores do tipo II não são diamagnéticos perfeitos, e desde que |ψ|² seja zero no centro dos vórtices, não teremos gaps de energia nos núcleos. Levando a conclusão de que não podemos classificar os supercondutores como condutores perfeitos.
O Tunelamento de Josephson
Agora sabendo que os supercondutores não poderiam mais ser entendidos como condutores perfeitos, a pergunta a ser feita era qual a característica universal que possuía o estado supercondutor. A resposta é a existência de funções de onda ψ(r) para muitos corpos, onde a amplitude a fase são quem mantém a coerência sobre as distâncias macroscópicas. Esse condensado é análogo, porém não idêntico, ao condensado de Bose-Einstein, com os pares eletrônicos de Cooper substituindo os bósons condensados no superflúido de hélio.
Desde que a fase e o número de partículas são variáveis conjugadas, refletindo os aspectos complementares do dualismo partícula-onda, a relação de incerteza é dada por:
onde o limite da precisão entre N e φ podem ser simultaneamente conhecidos.
O significado físico dos graus de liberdade da fase foram primeiramente enfatizados no trabalho de Josephson, que previu que os pares deveriam ser capazes de tunelar dois supercondutores a tensão zero, dando uma super-corrente de densidade:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Onde Jc é uma constante e φ é a fase de ψ no i-ésimo supercondutor na junção do túnel. Josephson previu que a diferença de tensão entre os eletrodos deveriam causar a diferença de fase aumentar no tempo como 2eV12t/ℏ, assim a corrente poderia oscilar com uma frequência ω=2eV12/ℏ. As junções de Josephson foram utilizadas em voltímetros ultrassensíveis e magnetómetros, e também nas medidas mais acuradas da razão das constantes fundamentais ℏ/e. De fato, a medida padrão do volt é hoje definida em termos da frequência da corrente alternada de Josephson.
Em electromagnetismo a susceptibilidade magnética (designada por ) mensura a capacidade que tem um material em magnetizar-se sob a ação de uma estimulação magnética de um campo magnetizante ao qual este é submetido.
Magnetização
Na presença de uma excitação magnética , os vários momentos magnéticos eletrônicos ou nucleares - ou seja, o dipolos atômicos - vão dividir-se em diferentes orientações segundo os níveis de energia que lhe sejam mais convenientes. A forma como a matéria responde à estimulação magnética depende entretanto não apenas do comportamento individual destes dipolos magnéticos frente ao estímulo externo mas também de como estes relacionam-se entre si e de como esta relação é afetada pelo campo estimulante. A resposta ao estímulo é expressa na forma de uma magnetização do material, e há materiais que respondem de forma a opor-se fracamente à presença do estímulo em seu interior e há os que respondem fracamente a favor do estímulo, ambos fazendo-no de forma geralmente proporcional ao estímulo. Os primeiros são classificados como materiais diamagnéticos e os últimos constituem o grupo dos materiais paramagnéticos. Há ainda os materiais que respondem de forma intensa ao campo estimulante - os ferromagnéticos - e os que não respondem - os antiferromagnéticos.
Susceptibilidade
Em materiais paramagnéticos e diamagnéticos sob ação de um campo estimulante não muito intenso a magnetização é proporcional à estimulação magnética aplicada, sendo por esta estimulação, qualquer que seja o valor do estímulo, sustentada: quando remove-se o campo estimulante, a magnetização destes materiais desaparece.
O coeficiente de proporcionalidade, designada por , define a susceptibilidade magnética do meio ou do material considerado.
G* = = [ ] ω , , / T] c [ [x,t] ] =
- sendo:
- a estimulação magnética, também em ampere por metro (A/m); e
- a susceptibilidade magnética (adimensional) do material.
Com base no sinal da susceptibilidade pode-se afirmar que:
- quando é positivo, tem-se o caso de um material paramagnético;
- quando é negativo, tem-se o caso de um material diamagnético.
Existe uma relação entre a susceptibilidade magnética e a permeabilidade magnética do meio, esta última a constante de proporcionalidade que relaciona o campo magnético total resultante tanto do estímulo quanto da magnetização induzida com o campo estimulante . Sendo permeabilidade relativa do material:
G* = = [ ] ω , , / T] c [ [x,t] ] =
Susceptibilidade de alguns materiais
A tabela abaixo [Ref. 2] apresenta alguns valores da susceptibilidade magnética para materiais tanto paramagnéticos como diamagnéticos:
Diamagnéticos | Paramagnéticos | ||
---|---|---|---|
Bismuto | -1,6 × 10-4 | Oxigênio | +1,9x10-6 |
Ouro | -3,4×10-5 | Sódio | +8,5x10-6 |
Mercúrio | -2,8x10-5 | Titânio | +1,8x10-4 |
Prata | -2,4x10-5 | Alumínio | +2,1x10-5 |
Cobre | -9,7x10-6 | Tungstênio | +7,8x10-5 |
Água | -9,0×10-6 | Platina | +2,4x10-4 |
Dióxido de carbono | -1,2x10-8 | Oxigênio (líquido) | +3,9x10-3 |
Hidrogênio | -2,2x10-9 | Gadolínio | +4,8x10-1 |
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
De acordo com a equação constitutiva da matéria utilizada no sistema S.I., a magnetização M e a excitação magnética H têm a mesma unidade. A susceptibilidade magnética, que não é mais do que uma relação entre essas duas grandezas, não tem unidades (grandeza adimensional).
A tensão elétrica de Planck é a unidade de tensão elétrica, notada por VP, no sistema de unidades naturais conhecido como unidades de Planck.
onde
é a carga de Planck
é a velocidade da luz no vácuo
Em eletromagnetismo e em geometria diferencial, o tensor eletromagnético ou tensor campo eletromagnético (às vezes chamado de tensor de Faraday ou bivector de Maxwell) é um objeto matemático que descreve o campo eletromagnético de um sistema físico. O tensor de campo foi usado pela primeira vez após a formulação do tensor quadridimensional da relatividade especial e foi introduzido por Hermann Minkowski. O tensor permite que algumas leis físicas possam ser escritas de uma forma muito concisa.
Definição
O tensor electromagnético, convencionalmente marcado F, é definido como a derivada exterior do quadripotencial eletromagnético, A, um diferencial de forma 1:[1][2]
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Em Eletrodinâmica e Eletromagnetismo, o teorema de Poynting expressa a lei da conservação da energia para o campo eletromagnético, sob a forma de uma equação diferencial parcial, estabelecida pelo físico britânico John Henry Poynting.[1]
O teorema de Poynting é análogo ao teorema de trabalho e energia da mecânica clássica, e matematicamente semelhante à equação da continuidade, pois relaciona a energia armazenada no campo eletromagnético ao trabalho feito sobre uma distribuição de carga pelo campo elétrico, através do fluxo de energia por unidade de tempo.
Definição
Geral
Em palavras, o teorema é um balanço de energia[2]:
A taxa de transferência de energia (por unidade de volume) a partir de uma região de espaço é igual à taxa de trabalho realizado(por unidade de tempo) sobre uma distribuição de carga, mais o fluxo de energia deixando essa região.
Relaciona a derivada temporal da densidade de energia eletromagnética com o fluxo de energia e a taxa em que o campo elétrico realiza um trabalho sobre uma distribuição de cargas.
Na forma diferencial, pode ser expressada pela fórmula:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
G* = = [ ] ω , , / T] c [ [x,t] ] =
em que D é o deslocamento elétrico, S é o vetor de Poynting, B representa a densidade de fluxo magnético e H a intensidade de campo magnético.
A partir do teorema da divergência, o teorema de Poynting pode ser reescrito na forma integral:
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde .é o vetor de Poynting instantâneo, e são as constantes de permeabilidades magnética e elétrica do vácuo respectivamente.
é a divergência do vetor de Poynting (fluxo de energia saindo da região), o trabalho realizado pelo campo elétrico sobre uma distribuição de cargas (J é a Densidade de corrente livre devido ao movimento das cargas), e u é a energia armazenada no campo eletromagnético, dada pela formula:
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.
Resolução de problema de causalidade
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde é a energia cinética relativística funcional de partícula i, e, e são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
Comentários
Postar um comentário